Virginia Tech® home

Interpolation of sparse high-dimensional data

Thomas Lux, Layne T. Watson, Tyler Chang

Abstract

Increases in the quantity of available data have allowed all fields of science to generate more accurate models of multivariate phenomena. Regression and interpolation become challenging when the dimension of data is large, especially while maintaining tractable computational complexity. Regression is a popular approach to solving approximation problems with high dimension; however, there are often advantages to interpolation. This paper presents a novel and insightful error bound for (piecewise) linear interpolation in arbitrary dimension and contrasts the performance of some interpolation techniques with popular regression techniques. Empirical results demonstrate the viability of interpolation for moderately high-dimensional approximation problems, and encourage broader application of interpolants to multivariate approximation in science.

Publication Details

Date of publication: November 12, 2020

Journal: Springer Numerical Algorithms

Page number(s): 281–313

Volume: 88

Issue Number:

Publication Note: Thomas C. H. Lux, Layne T. Watson, Tyler H. Chang, Yili Hong, Kirk W. Cameron: Interpolation of sparse high-dimensional data. Numer. Algorithms 88(1): 281-313 (2021)