Learning to See Through Obstructions
Jia-Bin Huang
Abstract
We present a learning-based approach for removing unwanted obstructions, such as window reflections, fence occlusions or raindrops, from a short sequence of images captured by a moving camera. Our method leverages the motion differences between the background and the obstructing elements to recover both layers. Specifically, we alternate between estimating dense optical flow fields of the two layers and reconstructing each layer from the flow-warped images via a deep convolutional neural network. The learning-based layer reconstruction allows us to accommodate potential errors in the flow estimation and brittle assumptions such as brightness consistency. We show that training on synthetically generated data transfers well to real images. Our results on numerous challenging scenarios of reflection and fence removal demonstrate the effectiveness of the proposed method.
People
-
Bio Item
Publication Details
Date of publication: August 04, 2020
Conference: IEEE Computer Vision and Pattern Recognition
Page number(s): 14203-14212
Volume:
Issue Number:
Publication Note: Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu Chuang, Jia-Bin Huang: Learning to See Through Obstructions. CVPR 2020: 14203-14212