DropLoss for Long-Tail Instance Segmentation
Esther Robb, Jia-Bin Huang
Abstract
Long-tailed class distributions are prevalent among the practical applications of object detection and instance segmentation. Prior work in long-tail instance segmentation addresses the imbalance of losses between rare and frequent categories by reducing the penalty for a model incorrectly predicting a rare class label. We demonstrate that the rare categories are heavily suppressed by correct background predictions, which reduces the probability for all foreground categories with equal weight. Due to the relative infrequency of rare categories, this leads to an imbalance that biases towards predicting more frequent categories. Based on this insight, we develop DropLoss -- a novel adaptive loss to compensate for this imbalance without a trade-off between rare and frequent categories. With this loss, we show state-of-the-art mAP across rare, common, and frequent categories on the LVIS dataset.
People
-
Bio Item
-
Bio Item
Publication Details
Date of publication: May 17, 2021
Conference: AAAI Conference on Artificial Intelligence
Page number(s): 1549-1557
Volume: 35
Issue Number: 2
Publication Note: Ting-I Hsieh, Esther Robb, Hwann-Tzong Chen, Jia-Bin Huang:DropLoss for Long-Tail Instance Segmentation. AAAI 2021: 1549-1557