Node Immunization on Large Graphs: Theory and Algorithms
Chen Chen, Hanghang Tong
Abstract
Given a large graph, like a computer communication network, which k nodes should we immunize (or monitor, or remove), to make it as robust as possible against a computer virus attack? This problem, referred to as the node immunization problem, is the core building block in many high-impact applications, ranging from public health, cybersecurity to viral marketing. A central component in node immunization is to find the best k bridges of a given graph. In this setting, we typically want to determine the relative importance of a node (or a set of nodes) within the graph, for example, how valuable (as a bridge) a person or a group of persons is in a social network. First of all, we propose a novel `bridging' score Dλ, inspired by immunology, and we show that its results agree with intuition for several realistic settings. Since the straightforward way to compute Dλ is computationally intractable, we then focus on the computational issues and propose a surprisingly efficient way (O(nk2 + m)) to estimate it. Experimental results on real graphs show that (1) the proposed `bridging' score gives mining results consistent with intuition; and (2) the proposed fast solution is up to seven orders of magnitude faster than straightforward alternatives.
People
-
Bio Item
-
Bio Item
Publication Details
Date of publication: December 31, 2015
Journal: IEEE Transactions on Knowledge and Data Engineering
Page number(s): 113-126
Volume: 28
Issue Number: 1