K S M Tozammel Hossain, Patrick Butler, Naren Ramakrishnan

Abstract

Surveillance of epidemic outbreaks and spread from social media is an important tool for governments and public health authorities. Machine learning techniques for now casting the flu have made significant inroads into correlating social media trends to case counts and prevalence of epidemics in a population. There is a disconnect between data-driven methods for forecasting flu incidence and epidemiological models that adopt a state based understanding of transitions, that can lead to sub-optimal predictions. Furthermore, models for epidemiological activity and social activity like on Twitter predict different shapes and have important differences. We propose a temporal topic model to capture hidden states of a user from his tweets and aggregate states in a geographical region for better estimation of trends. We show that our approach helps fill the gap between phenomenological methods for disease surveillance and epidemiological models. We validate this approach by modeling the flu using Twitter in multiple countries of South America. We demonstrate that our model can consistently outperform plain vocabulary assessment in flu case-count predictions, and at the same time get better flu-peak predictions than competitors. We also show that our fine-grained modeling can reconcile some contrasting behaviors between epidemiological and social models.

People

Patrick Butler


Naren Ramakrishnan


Publication Details

Date of publication:
December 1, 2014
Conference:
IEEE International Conference on Data Mining
Publisher:
Institute of Electrical & Electronics Engineers (IEEE)
Page number(s):
755-760