Edward Fox


Monitoring tool degradation during manufacturing can ensure product accuracy and reliability. However, due to variations in degradation conditions and complexity in signal analysis, effective and broadly applicable monitoring is still challenging to achieve. Herein, a novel monitoring method using ultrasound signals augmented with a numerically trained machine learning technique is reported to monitor the wear condition of friction stir welding and processing tools. Ultrasonic signals travel axially inside the tools, and even minor tool wear will change the time and amplitude of the reflected signal. An artificial intelligence (AI) algorithm is selected as a suitable referee to identify the small variations in the tool conditions based on the reflected ultrasound signals. To properly train the AI referee, a human-error-free data bank using numerical simulation is generated. The simulation models the experimental conditions with high fidelity and can provide comparable ultrasound signals. As a result, the trained AI model can recognize the tool wear from real experiments with subwavelength accuracy prediction of the worn amount on the tool pins.


Edward Fox

Publication Details

Date of publication:
January 13, 2022
Advance Intelligent Systems Open Access
Page number(s):
Issue Number:
Publication note:

Yuqi Jin, Xinyue Wang, Edward A. Fox, Zhiwu Xie, Arup Neogi, Rajiv S. Mishra, Tianhao Wang: Numerically Trained Ultrasound AI for Monitoring Tool Degradation. Adv. Intell. Syst. 4(5) (2022)