Jia-Bin Huang

Abstract

Convolutional neural networks have recently demonstrated high-quality reconstruction for single image super-resolution. However, existing methods often require a large number of network parameters and entail heavy computational loads at runtime for generating high-accuracy super-resolution results. In this paper, we propose the deep Laplacian Pyramid Super-Resolution Network for fast and accurate image super-resolution. The proposed network progressively reconstructs the sub-band residuals of high-resolution images at multiple pyramid levels. In contrast to existing methods that involve the bicubic interpolation for pre-processing (which results in large feature maps), the proposed method directly extracts features from the low-resolution input space and thereby entails low computational loads. We train the proposed network with deep supervision using the robust Charbonnier loss functions and achieve high-quality image reconstruction. Furthermore, we utilize the recursive layers to share parameters across as well as within pyramid levels, and thus drastically reduce the number of parameters. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of run-time and image quality.

People

Jia-Bin Huang


Publication Details

Date of publication:
August 13, 2018
Journal:
IEEE Pattern Analysis and Machine Intelligence
Page number(s):
2599-2613
Volume:
41
Issue Number:
11
Publication note:

Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, Ming-Hsuan Yang: Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(11): 2599-2613 (2019)