News featuring Ming Jin

Sanghani Center and CAIA cultivate transdisciplinary research in agriculture, AI, and data analytics

Ph.D. student scholarship recipient Sangwoo Kim (at center) with faculty mentors Anuj Karpatne (at left) and Venkat Sridhar. Photo by Tonia Moxley for Virginia Tech.

A new initiative between the Center for Advanced Innovation in Agriculture (CAIA) and the Sanghani Center for Artificial Intelligence and Data Analytics has launched a Graduate Research Assistantship Program that provides scholarships for exceptional Ph.D. students conducting research that generates agricultural solutions enabled by artificial intelligence and data analytics. 

The initiative builds upon a consistent collaboration between the two centers that began with the inauguration of CAIA in 2021. Faculty from the two centers have been working on joint research projects that includes a National Science Foundation-sponsored Convergence Accelerator project and some faculty are members of both centers.

Sangwoo Kim in the Department of Biological Systems Engineering and Runing Yang in the Bradley Department of Electrical and Computer Engineering are the first Ph.D. students to receive the Joint Graduate Scholarship.

Read full story here.


Ming Jin receives NSF grant to introduce antifragility into power systems

Ming Jin

Ming Jin, an assistant professor in electrical and computer engineering and core faculty at the Sanghani Center has received a National Science Foundation grant to revolutionize the design of learning-enabled, safety-critical systems, with a special focus on power systems.

The grant was awarded under the Safe Learning-Enabled Systems (SLES), a partnership between the NSF, Open Philanthropy, and Good Ventures.

Jin will collaborate with Javad Lavaei, professor in Industrial Engineering and Operations Research at the University of California Berkeley.

The project introduces antifragility, a concept that goes beyond robustness which can be compared to a sturdy structure that remains unyielding in a storm but does not grow or adapt from the experience; or resilience which is like a rubber band: when stretched, it can recover by going back into its original shape. 

“We are not merely designing systems to withstand challenges of rare and unpredictable events, but to flourish because of them,” Jin said. 

The task of preserving end-to-end safety of the power system will be crucial, Jin said, though it is complex amidst distributional shifts, driven by the growing complexity and unpredictability of the environment. 

The project will addresses safety challenges through three interconnected research thrusts. The first thrust targets the creation of proactive, antifragile systems that anticipate and adapt to changes, using advanced techniques such as meta-safe learning and offline reinforcement learning. The second thrust bolsters system antifragility through multi-agent systems, encouraging exploration, cooperation, and distributed control to ensure resilience and safety, even under significant disturbances. The third thrust is devoted to validation and stress testing, employing multi-objective adversarial learning and real-world case studies to better handle rare or unexpected events.

“Our algorithms are more than just learners; they’re evolvers. By turning continual threats into avenues for enhancement, we are redefining what safety in power systems looks like,” he said.

Four students advised by Jin will work with him on the project: Vanshaj KhattarAhmad Al-TawahaZain ul Abdeen, andBilgehan Sel.


Amazon-Virginia Tech Initiative announces support for two Amazon Fellows and five faculty-led projects for 2023-24 academic year

The Amazon Fellows are (from left) Minsu Kim and Ying Shen. Photos courtesy of the subjects.

The Amazon–Virginia Tech Initiative for Efficient and Robust Machine Learning will support two Amazon Fellows and five innovative research projects led by Virginia Tech faculty in the 2023-24 academic year that further the initiative’s mission of advancing innovation in machine learning. 

The initiative, launched in 2022, is funded by Amazon, housed in the College of Engineering, and directed by researchers at the Sanghani Center for Artificial Intelligence and Data Analytics on Virginia Tech’s Blacksburg campus and at the Virginia Tech Innovation Campus in Alexandria. 

An open call for fellowship nominations and faculty projects went out across the Virginia Tech campuses. An advisory committee of Virginia Tech faculty and Amazon researchers selected two Amazon Fellows from 27 nominations — more than double what was received last year — and five faculty projects from 17 submitted proposals. Read full story here.