Researchers in three different disciplines at Virginia Tech are partnering in a $15 million grant from the National Science Foundation (NSF) to establish an institute in the new field of “imageomics,” aimed at creating a new frontier of biological information using vast stores of existing image data, such as publicly funded digital collections from national centers, field stations, museums, and individual laboratories.
The goal of the institute is to characterize and discover patterns or biological traits of organisms from images and gain insights into how function follows form in all areas of biology. It will expand public understanding of the rules of life on Earth and how life evolves.
Having the opportunity to apply state-of-the-art machine learning models to bioinformatics problems as an undergraduate motivated M. Maruf to take a deep dive into machine learning and deep learning as a Ph.D. student in computer science at Virginia Tech which he chose because of its exemplary research and top-notch facilities.
“Dr. Anuj Karpatne’s unique view towards solving real-world problems fascinated me to explore more knowledge-infused machine learning,” Maruf said of his advisor at the Sanghani Center.
Maruf’s research interests lie in the broad domains of science-guided machine learning and its applications with a focus on integrating domain knowledge into machine learning models to obtain generalized solutions consistent with scientific knowledge.
“In particular, I am developing new algorithms for graph neural networks that allow for better representation with coherent knowledge propagation,” he said.
A black-box neural network model learns solely from training samples and requires a lot of annotated real-world observations to learn the underlying patterns accurately, said Maruf. Moreover, black-box Artificial Neural Networks (ANN) ignore external biological knowledge in the training phase, resulting in inconsistent outputs.
“I am currently addressing these challenges for the fish trait segmentation problem by incorporating biological knowledge into the state-of-the-art ANN model,” he said.
With restrictions to working in physical office space still in effect, graduate students at the Sanghani Center are working remotely this summer for companies, labs, and programs from coast to coast. Students are not only gaining real-world experience from internships and other opportunities but, in many cases, they are also able to advance their own research interests.
Following is a list of Sanghani Center students and the work they are doing:
Badour AlBahar, a Ph.D. student in electrical and computer
engineering, is a computer
vision intern at Adobe Vision group in San Jose, California. She is
working on human reposing and animation. Her advisor is Jia-Bin Huang.
Sikiru Adewale, a Ph.D. student in computer science, is a software development engineer intern at Amazon Web Service in Seattle, Washington. He is working on data transfer and storage on the AWS snowball device. His advisor is Ismini Lourentzou.
Vasanth Reddy Baddam, a Ph.D. student in computer science, is an research intern at Siemens in Princeton, New Jersey. He is working on contributing to industrial research projects on leveraging machine learning to analyze multi-agent reinforcement learning (MARL) algorithms and implement them. His advisor is Hoda Eldardiry.
Subhodip Biswas, a Ph.D. student in computer science, is working on Bayesian optimization techniques for automated machine learning (AutoML) and robust artificial intelligence systems as part of the Journeyman Fellowship he received from the DEVCOM Army Research Laboratory (ARL) Research Associateship Program (RAP) administered by the Oak Ridge Associated Universities (ORAU). His advisor is Naren Ramakrishnan.
Jie Bu, a Ph.D. student in computer science, is a research intern at Carbon 3D in Redwood City, California. He is working on artificial intelligence-powered computational geometry. His advisor is Anuj Karpatne.
Si Chen, a Ph.D. student in computer engineering, is a research intern at InnoPeak Technology in Seattle, Washington. She is working on research on model privacy protection. Her advisor is Ruoxi Jia.
Kai-Hsiang Cheng, a master’s degree student in computer science, is an intern at GTV Media Group in New York City. He is working on the content management system of the media’s platform. His advisor is Chang-Tien Lu.
Riya Dani, a master’s degree student in computer science, is a software engineer intern at Microsoft. She is working on web application developments under Azure. Her advisor is Ismini Lourentzou.
Debanjan Datta, a Ph.D. student in computer science, is an intern on the Amazon
Web Services team at Amazon in Seattle, Washington. He is working on time
series characterization and classification.
His advisor is Naren Ramakrishnan.
Arka Daw, a
Ph.D. student in computer science, is an applied scientist
intern at Amazon Web Services Lambda Science
Team in Seattle, Washington. He is
working on developing an
automated causal machine learning framework for setting up experiments and
estimating causal effects from observational data. His advisor is Anuj Karpatne.
Yue Feng, a Ph.D. student in electrical and computer engineering, is an intern with the Snap Research Creative Vision Team in Santa Monica, California. She is working on a 3D computer vision project. Her advisor is Jia-Bin Huang.
Chen Gao, a Ph.D. student in electrical and computer engineering, is a
research intern at Google in Cambridge, Massachusetts. He is working on
creating video panoramas using a cellphone. His advisor is Jia-Bin Huang.
Jianfeng He, a Ph.D. student in computer science, is an intern at Tencent AI Lab in Seattle,Washington. He is working on
research about multi-modal dialogue with mentors Linfeng Song and Kun Xu. His
advisor is Chang Tien-Lu.
Taoran Ji, a Ph.D. student in
computer science, is an intern at Moody’s Analytics in New York City. He is
working on analyzing credit and financial data for the global financial
markets, which will drive algorithmic improvements in Moody’s Analytics core
machine learning and artificial intelligence-driven products. His advisor is
Chang-Tien Lu.
Adheesh Juvekar, a Ph.D. student in computer science, is a machine learning and natural language processing intern at Deloitte & Touche LLP. He is working on automatically extracting relevant information from transactional invoices using state of the art deep learning techniques. His advisor is Edward Fox.
M. Maruf, a Ph.D. student in computer science, is a machine learning engineering intern at Qualcomm GNSS/location team in Santa Clara, California. He is applying machine learning techniques to hybrid technology fusion for navigation/positioning in mobile, wearable, automotive, and micro-mobility applications. His advisor is Anuj Karpatne.
Nikhil Muralidhar, a Ph.D. student in computer science,
received an Applied Machine Learning
Summer Research Fellowship at
Los Alamos National Lab in Los Alamos, New Mexico, to work with researchers on
physics-informed machine learning for modeling adsorption equilibria in
fluid mixtures. His advisor is Naren Ramakrishnan.
Makanjuola Ogunleye, a Ph.D. student in computer science, is an application support engineer intern at Northwestern Mutual in Milwaukee, Wisconsin. His duties include coding, testing, and implementing complex programs from user specifications. He is also performing client data analysis to support engineering technology to improve and facilitate customer success. His advisor is Ismini Lourentzou.
Nishan Pokharel, a master’s degree student in computer science, is a software engineering intern at Capital One in Mclean, Virginia. He is working on network infrastructure automation. His advisor is Chris North
Avi Seth, a master’s degree student in computer science, is serving as a graduate team leader this summer for Virginia Tech’s Data Science for the Public Good program. The group works on projects that address state, federal, and local government challenges around today’s relevant and critical social issues. His advisor is Ismini Lourentzou.
Mia Taylor, a master’s degree student in computer science, is a software
development intern at Amazon Web
Services in Seattle, Washington. Her team is working with Comprehend
AutoML which allows customers to build customized natural language processing
models using their own data. Her advisor
is Lifu Huang.
Yiran Xu, a Ph.D. student in electrical and computer engineering, is an intern with the Snap Research Creative Vision Team in Santa Monica, California. He is working on 3D human reconstruction and video generation/manipulation. His advisor is Jia-Bin Huang.
Shuaicheng Zhang, a Ph.D. student in computer science, is a natural language processing (NLP) research intern at Deloitte in New York City. He is part of the Audit and Assurance AI innovation team, working on open information extraction on internal control files to help auditors effortlessly process these files. His advisor is Lifu Huang.
Yuliang
Zou, a Ph.D. student in electrical and computer engineering, is a
research intern at Waymo in Mountainview, California. He is working on the perception
problem for self-driving cars. His
advisor is Jia-Bin Huang.