Anuj Karpatne 


Detecting land use and land cover changes is critical to monitor natural resources and analyze global environmental changes. In this paper, we investigate the land cover detection using the remote sensing data from earth-observing satellites. Due to the natural disturbances, e.g., clouds and aerosoles, and the data acquisition errors by devices, remote sensing data frequently contain much noise. Also, many land covers cannot be easily identified in most dates of a year. Instead, they show distinctive temporal patterns only during certain period of a year, which is also referred to as the discriminative period. To address these challenges, we propose a novel framework which combines the spatial context knowledge with the LSTM-based temporal modeling for land cover detection. Specifically, the framework learns the spatial context knowledge selectively from its neighboring locations. Then we propose two approaches for discriminative period detection based on multi-instance learning and local attention mechanism, respectively. Our evaluations in two real-world applications demonstrate the effectiveness of the proposed method in identifying land covers and detecting discriminative periods.

Xiaowei Jia, Sheng Li, Ankush Khandelwal, Guruprasad Nayak , Anuj Karpatne, Vipin Kumar: Spatial Context-Aware Networks for Mining Temporal Discriminative Period in Land CoverDetection. SDM 2019: 513-521


Anuj Karpatne 

Publication Details

Date of publication:
SIAM International Conference on Data Mining
Page number(s):