Dhruv Sharma, Chandan Reddy


Image segmentation is an essential step in biomedical image analysis. In recent years, deep learning models have achieved significant success in segmentation. However, deep learning requires the availability of large annotated data to train these models, which can be challenging in biomedical imaging domain. In this paper, we aim to accomplish biomedical image segmentation with limited labeled data using active learning. We present a deep active learning framework that selects additional data points to be annotated by combining U-Net with an efficient and effective query strategy to capture the most uncertain and representative points. This algorithm decouples the representative part by first finding the core points in the unlabeled pool and then selecting the most uncertain points from the reduced pool, which are different from the labeled pool. In our experiment, only 13% of the dataset was required with active learning to outperform the model trained on the entire 2018 MICCAI Brain Tumor Segmentation (BraTS) dataset. Thus, active learning reduced the amount of labeled data required for image segmentation without a significant loss in the accuracy.

Dhruv Sharma, Zahil Shanis, Chandan K. Reddy, Samuel Gerber, Andinet Enquobahrie: Active Learning Technique for Multimodal Brain Tumor Segmentation Using Limited LabeledImages. DART/MIL3ID@MICCAI 2019: 148-156


Chandan Reddy

Publication Details

Date of publication:
October 13, 2019
MICCAI Workshop on Domain Adaptation and Representation Transfer
Page number(s):